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CHAPTER 1

INTRODUCTION AND SUMMARY

This final report on AFOSR Grant No. 77-3462# is a

technical description of exterior-interior aperture coupling

of a plane electromagnetic wave to a rectangular cavity con-

taining a wire obstacle. Portions of the research have been

described in previous annual and interim reports. In addition,

portions have been presented at meetings of the International

Scientific Radio Union (URSI) and in a paper published in

Radio Science (Johnson, Howard, and Dudley, 1979). All of the

important analysis and results for the entire program are con-

tained in this final report. In addition, we contemplate one

additional journal article based on the final results contained

herein.

The problem of coupling electromagnetic energy into a

cavity through an aperture and excitation of current on a wire

in the interior is one requiring considerable care both in

formulation and numerical reduction. Essentially the procedure

we have used is to begin with Maxwell's equations, produce

vector Helmholtz equations for the electric and magnetic fields,

and invert the ensuing second order vector differential operators

through application of a dyadic Green's theorem. The results

are expressions for the electric and magnetic fields that can

be specialized as integral equations by taking the observation
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points to the aperture and to the surface of the interior wire.

The coupled integral equations produced are next solved by the

method of moments, a procedure which transforms the integral

equations into a matrix equation that can be numerically

inverted.

To simplify the technical bookkeeping, we have formu-

lated the problem in dyadic notation. This approach is

particularly useful in displaying the various components in the

Green's functions. One of the significant contributions of this

study has been in the careful construction of the dyads and

their evaluation in regions where they become singular. This

subject is treated in detail in our journal article recently

published in Radio Science, referred to above. We have been

particularly careful concerning the distributional character

of some of the singularities and the completeness of the Green's

dyadic eigenfunction expansions, a fact that has led to some

controversy in the literature. We feel that our contributions

have resolved some confusing statements on the longitudinal

wave functions and we are confident of our results.

The numerical reduction has occupied a major portion of

our time during the last year of the research. We have develop-

ed a summation method for evaluation of otherwise slowly

converging eignefunction series and thereby have been able to

significantly reduce the numerical processing time. We have

discovered a sign discrepancy between our work and that of Seidel

(1978). Our analysis supports the sign obtained in our results.

1
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In Chapter 2, we discuss the problem geometry and

produce the formulation in the frequency domain. In Chapter 3,

we discuss the scheme for numerical solution with particular

attention to subdividing the matrix to be inverted by the

method of moments. In Chapter 4, we discuss the special tech-

niques developed to sum the series appearing in the various

elements of the matrix. In Chapter 5, we give sample numerical

results for aperture fields and wire currents. We have included

an appendix describing our analysis of the sign difference

k between this work and that of Seidel.

As a footnote, we should like to point out a dissapoint-

ment in one phase of the work. We had hoped to be able to

ptovide some transient results for the wire current by obtaining

the currents at various positions along the wire over a wide

range of frequencies, multiplying by the spectrum of a suitable

input pulse, and taking the numerical inverse Fourier transform.

Indeed, Figures 21 and 22 are representative of our efforts in

this regard. Unfortunately the resonances are so narrow (in

engineering terms, the Q is extremely high) that we could not

obtain a causal inverse transform. In other words, the resonance

is so localized, it is as if we were attempting to take the

inverse transform of a delta function. We verified our difficul-

ties by creating an RLC circuit model, solving for the current

in the frequency domain, and attempting a numerical inverse trans-

form. All goes well until one selects a value for the resistance

small enough to again produce a very high Q situation. At this

point all codes we have tried for performance of the numerical
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inverse start failing. We believe that this problem can be

solved by analytic continuation of the frequency variable w

away from the real axis to avoid the poles of the transfer

function that are located close to the axis. Since attempting

such a procedure requires a major set of changes in our computer

program we have not tried to do this.

"" _ __... ...... -I



CHAPTER 2

FREQUENCY DOMAIN FORMULATION

The frequency domain version of the boundary value

problem of Figure 1 is now considered by specializing the

exterior source to that of a time harmonic e iWt plane wave. The

problem formulation of this section will result in a numerically

tractable system of coupled integro-differential equations for

the thin wire currents and tangential aperture electric fields.

once these wire currents and tangential aperture electric fields

are determined, fields anywhere in the exterior or interior regions

may be computed by use of the appropriate Green's functions.

First potential dyads for cavity interior and exterior

half-space are constructed. Next these dyads are used to obtain

integral representations of the electromagnetic fields in each

region. These integral representations are given in terms of

the unknown tangential aperture electric fields and wire currents.

Continuity of the aperture's tangential electric fields and the

boundary condition that the tangential component of the electric

field is'zero along the wire are enforced to yield a system of

coupled integro-differential equations for the unknown aperture

electric fields and wire currents.

The potential Green's dyads for the exterior half-space

and cavity interior are now constructed. The frequency domain

solution of Maxwell's equations driven by electric currents may

by expressed as

.5 ....
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E- (k2 + VV.)X (2. la)

-= VX
-7K 

(2. lb)

where 2  2

n x = 0 on a perfect electric

v =0 conductor (p.e.c.).

In (2.c) n denotes a unit normal vector.

The radiation condition at infinity and Meixner's edge condition

[Meixner 1972] are imposed where appropriate to insure a unique

solution. Similarly the solution of Maxwell's equations driven

by magnetic currents is given by

H = -(k 2 + VV-)F (2.2a)

VXY
S= (2.2b)

where

(V2 + k 2)

3 X (VxF) 0 on a p.e.c. (2.2c)

n F =

Solutions of the above systems (2.1) and (2.2) may be

obtained by use of the corresponding magnetic and electric vector

potential dyads GA and F" The magnetic potential dyad satisfies

- 2 + k 2  (' - I 6(-') (2.3)

F x Z5A(Frl) = 0~ on a p.e.c.

V *GA(rl') =0

I
| -

-..



8

where I is the identy dyad. Similarly the electric vector poten-

tial dyad satisfies

_ 2 + k2 )gF( lF') = ( C¢-F,) (2.4)

x (V x gF(r F)) 0) on a p.e.c.
n -

Since these potential dyads are diagonal the exterior

half-space dyads, denoted by the superscript "hs", may be con-

structed by image theory. The results are presented in Table 1.

Since systems (2-3) and (2-4) determine self-adjont boundary

value problems, the interior cavity dyads, denoted by superscript

"c", may be given in terms of their complete eigenfunction

expansions. These expansions are given in Table 2. The corre-

sponding field dyads may be obtained by differenation, however

they are highly singular and should be interpreted as distributions

(Johnson, Howard, and Dudley, 1979).

ii _ _ __ ________ ___V
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Table 1. Potential Dyads for The Exterior Half-space

h0 00

0 1
9F F 0~

o~rr' o ( (r1)')- ( r'

where

-ikR
e( I ')= 4i'-

-ikR i
e

4.411

R = [(x-x') 2 + (y-y') 2 + (z-Z) 2

and

2 2 2"
R.= [(x-x')2 + (y-y') + (z+z,-c)

3.

The problem geometry is given in Figure 1.
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Table 2. Potential Dyadic Green's Functions for A Rectangular

Cavity*

(cc) (8s) (S SS)0

r~~m, n, m nG 0 2 2 (SS) (cc) (SS) y0
A,~ -~ L 0 0 ( s) (ss) Y (cc) J

and

c cS) )(c y(cc)0 0

abc 1, m, n=0__2 - x y z. 0 (cx(Cy(ss)j
Lm n 0 (cc) (cc) Y( S

where (CC) x(Ss) y (SS) z  cos(kx A cos(k x' ) sin(kyy)sin(kyl)sin(kzz)sin(k zZ' ),etc.

x kW-, M-k k k +k + k k
x b c M x y z

and

1, if i = 0

I i 2, if i + 0

A A

The cavity dimensions are a,b, and c in the x, y, and

directions respectively.

I' I
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Now that the appropriate Green's dyads have been con-

structed, they will be used to obtain integral representations

of the electromagnetic fields in each region. The equivalence

principle [Harrington 1961, p. 106] is used to obtain an

equivalent problem for the exterior half-space as illustrated

in Figure 2. In the equivalent problem the aperture has been

shorted and the magnetic surface current RMs has been placed on

the surface where the aperture was previously located. The

magnetic surface current is chosen to make the electric field

jump to its origional value just above the aperture surface.

The equivalent problem for the interior region is obtained

similarly and is illustrated in Figure 3.

It is convenient to separate the electromagnetic field

in the exterior half-space into two terms. The short circuit

fields, denoted by the superscript "sc", are those fields that

would exist if the aperture were not present. These fields may

easily be found by geometric optics. The fields due to the

presence of the aperture or equivalently scattered by the mag-

netic surface current may be computed by use of the electric
hs

potential dyad 7F of Table 1 and (2.2). In particular the

magnetic field in the exterior half-space is given by

sc 1 2 hs
= i() + -.(k +VV)J (rIFI) R5 (') ds' (2.5)

A

where A is the aperture surface. The first term on the right

of (2.5) is the short circuit magnetic field, the second is the

- L
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magnetic field due to the presence of the aperture. The electric

field for the exterior half-space may be found similarly by use

of (2.2b) and (2.2c).

The fields in the cavity interior (Figure 3) are the sum

of fields due to magnetic surface current plus the fields scattered

by the wire. These fields may be obtained by use of the cavity

potential dyads (Table 2) and (2.1) through (2.4). The magnetic

field in the cavity interior is given by

j(F) l(k2 jF"F')M()ds- + V x GAF")(~s.(2.6)

A

The electric field in the cavity interior may be found in a

similar manner.

Note that by construction the equivalent problems (Figures

2 and 3) satisfy continuity of the electric field across the

aperture. Before enforcing continuity of the aperture's tangential

magnetic field, it is recalled that under the thin wire assumptions

of Section 1 all current is directed along the wire axis. Thus

continuity of the apertures tangential magnetic field plus (2.5)

and (2.6) yield

2iwi- 2iac2 2ghsTy c,YY
iy (r) = (k + Dy )2fAgF(r F') + gF (rlrF')]E x(')ds'

(2.7a)

- a2  r hs,xx cxx
3y ---x [gF (F ') + gF(rIr')]Ey (F')ds'

A
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and
in ) hs •xx cr xx

-2iw Hx(r)= (k 2 + a- [gF(r ) + gF(Z )] E (F')ds'

A (2.7b)

A hs~
[gF( r'+F r.r ) IE (F')ds'iw- 57 G. Y F 7

x J1G~ c )y ')s
A W

The tangential component of the electric field along the wire is

set to zero. This gives

1 2 a 2) GA1 r) a f c, xx
0 -__(k + 2 (FF) (F')ds' + (FIF')E~ (F')ds'(2.7c)

W A

Equation set (2.7) is a coupled system of integro-differential

equations for the unknown aperture fields and wire currents.

In the next section an efficient numerical solution scheme for

this system will be presented.



CHAPTER 3

FREQUENCY DOMAIN SOLUTION SCHEME

A numerical solution scheme for the linear system of

coupled integro-differential equations (2.7) derived in the

previous section is now presented. The method of moments

[Harrington 19681 with pulse expansions and point matching is

used. As illustrated in Figures 4 and 5, the unknown,

tangential, aperture electric field components are approximated

by piecewise constant rectangular patches. The x component of

the electric field is expressed as

NE
Ex(,) = x exi P x(') (3.8a)x i=l xi

where
1 if r' is in the ith rectangle of Fig. 4

Pxi( ') 0 , otherwise

exi are unknown constant coefficients, and NEx is the number of

of nonzero Ex pulses. Similarly

NE
Ey(F') = e P (F') (3.8b)y i=l yi yi

where

1, if F' is in the ith rectangle of Figure 5Py (F') =
0, otherwise

eyi are unknown coefficients, and NEy is the number of nonzero

Ey pulses.

16

..........
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Figure 4. Ex Aperture Pulse Expansions and Finite Difference
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Grids for Potential Dyads.
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Note that the E and Ey aperture pulse expansionsEx y

(Figures 4 and 5) are offset. Centers of the Ex pulses corre-

spond to corners of E pulses and vice versa. This will latery

allow efficient evaluation of the x and y derivatives in (2.7a)

and (2.7b) by finite difference techniques. Wilton and Glission

[1976] applied this technique, offsetting the expansion functions,

to the problem of scattering from a rectangular plate.

Since J is assumed uniform about the wire circumferencey

it is helpful to define the current I by

I(y') = 27T r J (y') (3.9)

where rw is the wire radius. Under the thin wire approximation

all current is assumed to run along the wire's center [Seidel 1977,

1978]. This current is now approximated by (Figure 6)

NW
I(y') = Ii P(Y )  (3.10)

i wl

where

1, if y' belongs to the ith interval
P wyI) = 0, otherwise

I. are the unknown current coefficients, and NW is the number

of nonzero wire current pulses.

Enforcement of (3.7a) at the nonzero Ex aperture pulse

centers, (3.7b) at the nonzero Ey aperture pulse centers, and

(3.7c) at the wire surface points (xc + rw,ym , Zc), where xc and

z c are the respective x and z corrdinates of the wire center and
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yM (m =1, NW) are the nonzero wire current pulse center points,

T1 1 T 12  10 e.
mi I 'mi 1  -X m

T1 T 22 Tj 23f (3.11)

32: 330o T mi T.M Ii

The T submatrices are given by

11 (k2 + 2 Igh l-ryy C,yIIl F~xdlmlN

A 1=1, NE) (3.12a)

12 a 2  hs,xx c'x

A NEx =1, NE ) (3.12b)

2 -a 2jghs~y c c,yy
Tml ax37 jj[(rMjr')+gF(r MIF')IPx (r')dx'dy'(m=l,

A NE y; i1l,NE X) (3.12c)

22 2  a2  hsx crx .)(F')dx'ds' (m=l,

IIi 9x F(F j'F')+gF (r '

A
NE y;i1l,NE ) (3.12d)

T. I G. a .PPw(y')dy'd ' (m-l,NE ;i-1,NW) (3.12e)

mi TTr - z Aw
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T32 JJgF(ri ') Pi L')dx'dy' Cm=l,NW;i=l,NEy) (3.12f

A

33 1 2 a22
1 E(k+ -- )rGrYTFl)P .(y')dy'd0'(m=l,NW;i=l,NW) (3.12g)mi i27' ay W m W1Y w

The forcing function's components are

inc
2iwu Hy (7m) (m=1,NEx )  (3.13a)

and

2 inc
f = -2iwp H (rm) (m-1,NE ). (3.13b)m m' y

Once the T matrix elements are obtained the unknown aperture

field and wire current coefficients may be calculated by

Gaussian elimination.

Evaluation of the T matrix elements (3.12a - 3.12d) is

now considered. To avoid kernels that becom highly singluar

as Fm approaches F', the derivatives are kept outside the integral

signs and are evaluated by finite differences. The appropriate

finite difference grids are illustrated in Figures 4 and 5. Thus,the

problem of evaluating (3.12a - 3.12d) reduces to that of com-

puting the xx and yy components of the electric vector potential

dyads integrated over the aperture pulses (' coordinates) and

matched at the appropriate pulse centers. The major obstacle to

these computations is that the cavity dyads (Table 2) converge

more and more slowly as the distance between rm and F' becomes

small. Summation techniques for these dyads are presented in the
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next section. The half-space potential terms are evaluated by

analytical integration of the singular terms, then Gaussian

quadrature [Abramowitz and Stegun 1964, P. 887] is used to

integrate the remaining terms.

Since the source and observation points in (3.12e) and

(3.12f) remain distant the z derivatives may be brought under

the integral signs. The remaining kernels consist of exponen-

tially convergent infinite series which may be integrated term

by term.

The derivatives on the wire potential terms (3.12g) are

kept outside the integral and evaluated by finite differences

(Figure 6). The major obstacle to evaluation of this term is

the summation of a cavity potential dyad as the distance between

source and observation points becomes small. Techniques for

carrying out this summation are presented in the next section.



CHAPTER 4

EVALUATION OF CAVITY POTENTIAL TERMS

The final obstacle to the solution of our frequency

domain problem is the matrix fill of elements involving the

-c -ccavity vector potentials g., and GA . In Table 2 these dyads

are given in terms of their threefold infinite eigenfunction

expansions. For source and observation points distant it will

be seen that these expansions reduce to rapidly exponentially

convergent double series. However, as source and observation

points become close, these series become slowly convergent.

This chapter develops an efficient means of evaluating the

potential dyad F(IF') for aperture source and observation

points close, under the restriction that ka (Figure 1) is less

than 7. The same technique will be used to evaluate A(F' jF) in

(3.12g) under the thin-wire restriction.

Consideration is now given to the xx component of the

dyad gFxx Similar techniques hold for gc'yy. From Table 2

with z = z' - c (Figure 1)

F I ) E 1 mn sin(kxx) sin(k x')cos(k y)cos(k y
£=0 K2  2  

y yX=K£mn-k
m--i (4.la)
n=0

- S(Ix-x'I, y-y')) + S(Ix-x'I, y+y') - S(x+x', y+y')

- S(x+x', Iy-y'I) (4.1b)

24_wp_-
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where

S(XY) 2  cos(kxX) cos(k Y) • (4.1c)4a, c -0 K -k y

m=1
n=O

Since the terms of (4.1b) depend only on sums and

differences of the respective source and observation points'

components, the number of calculations in evaluating (3.12b)

and (3.12d) is less than if (4.1a) were applied directly.

For source and observation points distant the threefold

infinite series of (4.1c) may be reduced to a double sum that

yields itself to rapid evaluation by digital computer. Equation

(4.1c) is closed in Y [Gradshteyn and Ryzhik 1965] which yields

1 cosh[/ x + k  k  (b-Y)
SXY) = 2ac E 7 b] cos(k xX)k=0 A 2 + k2 _ k2 sinh[42 + kz - k b

y x y
m1l (4.2a)

with ka (Figure 1) less than 7. The series in (4.2a) is exponen-

tially converging and readily evaluated provided that Y is not

too small with respect to the aperture dimensions and not too

close to 2b. Likewise if (4.1c) is closed in X one obtains

cc1 C k cos(k vY)
SM Y) b Z e TM(X) cos (kyY) - 1 E(,)=4bc Z £n y T k 2  2 k 2

Z=O Z=0 k + k k
n=0 n=O Y z

(4.2b)
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where

cosh[2 + k 2 -k 2 (a-X)]z if k2 + k2  k 2 > 0

AZ +nkz - k'sinhk + k k Z a] y z
y z y z

T(X) =

COS 2  2 k2  (a-X)] ifk 2 + k 2 _ k2 < 0
-zy z

k -Y - k z sin ( -ky -kz a

Similar techniques may be used to close the second term of (4.2b).

The result is a single finite series with know asympotic form

[Abramowitz and Stegun 1970, p. 1005]. This this series may

readily be evaluated. First termwise subtraction of the corre-

sponding asymptotic term from the original series term yields a

rapidly converging new series. Next the otherwise slowly

converging asymptotic series is added to the modified series by

its known analytical form. The first term of (4.2b) is exponen-

tially convergent provided X is not too small or too close to 2a.

In the aperture geometries considered (Figure 1), the only case

where neither (4.2a) or (4.2b) yields itself readily to numerical

evaluation is for both X and Y small compared to the cavity

dimensions. Otherwise, Seidel (1977) has obtained an efficient

method for numerical evaluation of these sums.

The remainder of this chapter is concerned with evaluation

of (4.1c) near the source, that for X = Ix-x'I and Y = Iy-y'l

small. Equation (4.1c) is closed in z, making use of Spiegel

(1964, p. 189] and Gradshteyn and Ryzhik (1965, p. 40]. This yields

a _ _ _ _
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Go2 2 2S(X,Y) = Lb. T(k2 + k - k 2 ) cos(k X) cos(k Y) (4.3)
2ab M-1 n x y x

n=o

where

oth(cik 2 + k2  k 2

Tk/ + k - kk) = f k -k >0

x y

-cotccf 2  k 2 k2
if k2 + k2 - k2 < 0.

X2 k2 x y
x -y

This series in (4.3) has an asymptotic form

SASY(X ' Y) = n cos(kxX) cos(kyY) . (4.4)
m=l /k2 + . 2 _ 2

n=0 x y

The difference series whose terms consists of the original series

terms (4.3) minus the corresponding asymptotic series terms is

readily evaluated by digital computer. Thus (4.3) may be evalu-

ated if a method of evaluating the otherwise slowly converging

asymptotic series may be found.

To evaluate SASY(XY) (4.4) consider the single series

So (Y) = n cos(k yY) (4.5)
n=o y

y

where Y is greater than zero and u2 equals ks - k2 which isx

greater than zero under the restriction that ka is less than i1.

An alternate expression for So (y) will be obtained from Poisson's

formula [Papoulis 1962]

I ____________________________________-_
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f (nT) = F(-!-- )4.6a)

where f(t) is continuous and its Fourier transform F(w) is

given by

ooit

F(W) = J f(t)e-it d"t. (4.6b)

Equation (4.5) is rewritten as

7rY
S°(Y) = Y 0 cos(n (4.7)

n=-0 .2 + 2

where v equals Yu. In (4.6a) f(t) is identified as cos(t) Itsf't2 + v2,
Fourier transform is given by

r
F(W) e cos(t) dt (4.8a)

= cos[(l+w)t] dt + cos[(i-1)t] dt (4.8b)
/t v oVt2 + v 2

1o(1 + v) +K -(

KO(Il~~~~_ _ +I~)+K~W ~)(.c
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Equation (4.8b) follows from (4.8a) plus symmetry considerations.

The integrals of (4.8b) result in the modified Bessel functions

of (4.8c) (Morse and Feshbach 1953, p. 1323]. Application of

(4.6a) to (4.7) yields

So(Y) = [Ko(Y + 2nbI 2 - k2 ) + K (12nb - Y1 - 2)]x 0

(4.9a)

= K ( x - k{y) 2 [K 0 ([2nb + Y] 2 k2)
n=l

+ Ko([2nb - Y] 2_k2)]. (4. 9b)0 "

Applications of (4.9b) to (4.4) yields

SAsy(X'Y) =- 1 0 ( - k Y cos(kxX)

ar m=l n=l [ 0O ( [ 2 n b + N. x

S ([2n b - Y x k ) ] cos(kxX). (4.10)

The second term on the right of (4.10) is very rapidly convergent

due to the exponential behavior of Ko s asymptotic expansion

[Arfken 1971, p. 517]. The first term on the right (4.10) is

exponentially convergent for Y > 0. However, as Y becomes smaller

the series converges more and more slowly. A summation formula

for the first term is given Lewin [1951, p. 83]. Thus

I."
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1 /2 2k y) Y 0 (kY)_lmiKo(. - k2 ) cos (kx)') -
air oK - Y x 4a

1 cos[kX 2 +y2(4+ - (4.11i)
-T X 2 + 2

1 " cos[k 2  (2ha 2 cos[kY 2 + (2na -X)2]~+

n=l /Y2 + (2na + X)2  + (2na -

Note that the dominant singularity in (4.11) is the same as that

of the half space dyadic gF of Table 1. Unfortunately the

infinite series (4.11) is slowly convergent. However if one

approximates each term of this series by a finite Taylor series

in X and Y about the origin, the summation over n may be obtained

by analytical methods. For example, the first term obtained in

the Taylor series is given by

cos(2kan) _ £n[2 sin (ka)] (4.12)
n--- na

(Abramowitz and Stegun 1970, p. 10051. Similar formulas may be

used to evaluate the higher order terms in the Taylor series

approximation.

Although the above discussion has been restricted to the

evaluation of gF 'x x only minor changes are needed to evaluate

gC'yy" Also the terms that must be evaluated (3.12) are integrals

of the RR and 9 components of gF " The sums of (4.2) may be

evaluated by term integration [Titchmarsh 1939, pp. 36-45]. The

exponentially convergent terms (4.10) are also evaluated termwise.
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The only remaining question is the accuracy of the previously

discussed Taylor series approximation (4.11). A sixth order

Taylor series was used for numerical testing and yielded no

relative error worse than 1-10 - 6 in these terms when max(X,Y)/

a < .05. This procedure allows rapid evaluation of the series

on the right of (4.11), provided that both X and Y are small

with respect to the cavity dimensions in the aperture plane.

Otherwise, this series would not readily yield itself to numerical

evaluation on a digital computer.

The above summation techniques are now used to evaluate

Gc'YY potential terms of (3.12g). Under the thin wire

approximation all current is assumed to reside along the wire

center. Following Lewin [1975, p. 121] the wire radius is set

to zero in all terms except where needed to prevent a divergent

series.

To reduce the number of computations necessary to

evaluate all of the Gc,yy terms, this potential is expressed as
A

G YY( MIJ'I = SOjy + y'[ + SOfy-y'I) (4.13)

where

1 1 mn ss) x (ss) cos (k Y) (4.14)
S(Y) = l K2 k ( yZ=l K mn

m=l1
n=0

and the notation is explained in Table 2. This series may be

closed in Y to yield

0 E Em (SS) (SS)z csh[v2+kx - k2(b-Y)]
S(Y) 1 Z m x z z (4.15)lac -- 2-k 2 b

m=1 xz2 + k2 2  sinh[ /2 + kz
m= l . .
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This series is rapidly exponentially convergent provided that

Y is not too small or does not approach 2b. Since

S(Y) = S(2b-Y) (4.16)

all that remains to be considered is y small with respect to

the cavity dimensions.

A scheme for numerical evaluation of S(Y) with y small

is now given. Recall that r- = xc+ry, Z) and F'= (x ,z cfTI c w mc (xcy'z

where xc and zc are the respective x and z coordinates of the

wire center. By means of a trig identity S(Y) (4.14) may be

expressed as

S(Y) = T2 (Y) - T1 (Y) (4.17)

where

00 cos[k x ( 2 xc+rw)]cos(k yY) (ss) z
T(Y) 1 E : 2 (4.18)1 £=l K -k

m=l Zmn

n=o

and

1 C Cmn cos(k rw) cos(k Y) (ss) (4.19
T2 (Y) = 2 2

m=l £mn i
n=o

Equation (4.18) may be closed in x to yield a rapid exponentially

converging series. The wire radius in (4.18) is set to zero.

Next (4.19) is closed in z to yield
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T (y) -0 E m E n __ cos (kY) sinh kxk -k (C-Z).
2 4abc m l /k2  2 /k k2  .ih~~ C (4.20)

n=o vkx +ky K ih x +ky kC1 (.0

This series has the asymptotic from S ASY /2 . (4.4). Thus the

procedure for evaluation of this term has already been given.



CHAPTER 5

SAMPLE NUMERICAL RESULTS

The numerical solution scheme of the previous sections

was implemented by means of a fortran program on a Cyber 175

computer. In all examples (Figures 7,10,14) the wire radius was

set at one millimeter, the number of aperture pulses in the

x-direction was 4, the number of aperture pulses in the

y-direction was 5, and the number of wire current pulses was 12;

a zero half pulse counts as one half.

In the first example (Figure 7) a normally incident

plane wave, with free-space wavelength equal to 10 meters, im-

pinges on a cavity backed aperture. The incident electric

field is y directed to give maximum coupling to the interior

wire. The cavity dimensions are a = 1.4 meters, b = 4.5 meters,

and c = 2.4 meters in the x, y, and z dimensions respectively.

The square .02m x .02m aperture is centered with midpoint

ra = (.7,2.25,1.2). The centered thin wire runs from (.7,.5,1.2)

to (.7, 4.,1.2). Figures 8 and 9 show some cuts of the aperture

electric field. As expected for electrically small apertures

the aperture electric field is essentially imaginary. The

real part is seven orders of magnitude lower than the imaginary

part. The y component of the aperture electric field has even

symmetry about both axes of the aperture, while the x component

is odd. Figures 10 and 11 show a comparison between Seidel's

34
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dipole moment solution [Seidel 1977, 1978] (dotted line) and

the integral equation approach (solid line). Seidel's solution

treated the aperture coupling by the use of dipole moments for

elliptical apertures, in this casecircular with radius .01 m and

located inside the square aperture. Unfortunately a sign

discrepancy occurs in the imaginary part of the current (Figure

11). Note that while the symmetry of the integral

equation method is preserved the dipole moment has lost its

symmetry. At first one might suspect that the imaginary part

of the current (Figure 11) is in the noise, however after

running various test cases this sign discrepancy consistently

occurred. A painstaking search of our computer program yielded

no error. An attempt to resolve this discrepancy is given in

Appendix A.

In the next example (Figure 12) an incident plane

wave travels in the y direction, is polarized with a i directed

incident field, and has free-space wavelength equal to one

meter(lm). The cavity dimensions are .25m, .3m, and .2m in the

x, y, and z directions respectively. The wire is oriented

parallel to the y axis and runs from (.125,.05,.l) to (.125,

.25,.l). The square aperture (.02m x .02m) is centered with

midpoint Fa = (.125,.15,.2). Figures 13 and 14 show cuts of

the aperture electric fields, the symmetry of the aperture

electric fields is described in Table 3. Figure 15 gives a

comparison between the wire currents computed by Seidel's

WLh
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Table 3 Aperture Electric Field's Symmetry for Geometry 2.

Component Real or Imaginary Aperture x-axis Aperture y-axis

x real odd even

x imaginary odd odd

y real even odd

y imaginary even even

(t
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dipole moment approach and the technique presented in this

paper. The dipole moment solution is for a circular aperture

of radius .Olm and with centerpoint ra = (.125,15,2).

Again the sign discrepancy persists.

Figure 16 has the same geometry as Figure 7 except the

centered aperture is made rectangular (.8m x .3m). A study of

wire current versus frequency is made in Figures 17 - 21.

Figures 7, 8, 9, and 20 show the variation in current for

4 4 8frequencies of 10 . 4.104 108 hertzs respectively. Note the

change in sign of the wire current as the frequency crosses

the first wire resonance of 4.16 107 hertzs. This resonant

frequency is slightly lower than that for a wire in free space.

Figures 21 and 22 show the variation of the current at the

wire center with frequency. Note that the real part of the

current (Figure 21) is proportional to the frequency squared

in the quasi-static portion of the frequency spectrum. Also

the imaginary part of the current (Figure 22) is proportional

to the fifth power of the frequency in the quasi-static region.

The amount of computation time for each frequency point is

20 seconds c.p.u. time on the Cyber 175 computer.
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APPENDIX A

ON THE SIGN DISCREPANCY

In this appendix analytical techniques are combined

with numerical results in an attempt to resolve the sign

discrepancy of Chapter 5. In particular the problem

geometry of Figure 7 will be considered. First check on

the signs of the aperture electric fields will be made by

comparison with currents induced when a normally incident

plane wave strikes a thin perfectly conducting rectangular

plate. If one neglects the contributions to the aperture

fields due to scattering from the wire and cavity walls

these problems are Babinet equivalents.

The currents induced on the plate (Figure 23)

satisfy

inc +2 )jf Jx()e- ikR 2 -ikR

inc 3 J1r+ 2 ( dx'dy'-iwr E (r)=(k += 4 R dx'dy'+. dy 4x2 JJ

p p (A.1)

where F is located on the plate surface P, and R = IF-F'I.k

For a normally incident H polarized plane wave (Figure 23)
y

(A.I) and (A.2) may be expressed as

ikR- ik

inc 2 -ika 22 ffH(F)e -

-k +-- ) 4 ITx( y) e rR dx'dy'

x (A.3)
p P

54
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Figure 23 Scattering from a square plate.
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2 H(' ) e 2 e
0 (k2+ 7) J4 dx'dy'-3 ay. 47R dx'dy' CA.4)

P P

If one neglects the contribution of the aperture

fileds due to the wire and side and back cavity walls and

specializes the incident field to an E polarized normallyy

incident field (2.7a) and (2.7b) become

2 a2  rEx(') -ikR 2 (rE(F')ikR

0 =(k ___- -27 -. e dx'dy - dx'dy' (A.5)
ay R Jya

A A

inc -ikR
-aE (r) =(k 2 x(')e__ =_(k2  -lR dxd' axy 21

3z ax )  dy e -3Y dx'dy'.

A A (A.6)
jP

If one identifies E = IH 2 and E = JP wherey 2y -2- Ex- x y

2-

the superscripts "C" and "P" denote cavity and plate respec-

tively, one sees that for identical forcing functions Hinc 1
y

and Einc = 1, the aperture EC should be - 1. JP

Figure 24 shows a plate scattering problem for a .15X
inc

square plate with Hy = -1. When comparing with Figures (8

inc C
and 9) with E 1 we should have E to have the same sign

y y
as J as is indeed the case. Note that the signs of the

aperture fields and wire currents should not change in the

quasi-static frequency regime. The sign discrepany of Chapter 5

is in the imaginary part of the wire current. Since the

Greens functions of (2.7c) are real the imaginary component of

the wire current is driven by the real part of the aperture

Lj T7.
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field E The question arises as to whether the presence of

the cavity and or wire changes the sign of the real part of

the aperture field E . The results of our computations indi-

cate that this is not the case, as illustrated in Figures

(25-28).

The imaginary component decreases by approximately

factor of 2 as the Green's functions kernel in (A.5) and (A.6)

changes from

1 (cos(kR) -i sin(kR) (A.7)

2T R R

for the halfpace to approximately

1 coskR i sin(kR) (A.7)
2T R 2R

for the interior cavity, exterior halfspace problem. It is

comforting to note that decreasing the imaginary part of the

kernel also reduced the real part of Ey, since an entirely

real kernel in (A.5) and (A.6) would produce a zero real

component of both E and EX.
v

An argument is now given to determine the sign of the

imaginary wire current (Figure 11). Note that (2.7C) may be

expressed as

J (r) = iwe (E (A.7)
y y

where 0 is a real linear operator. Note that the real and

imaginary parts of Ey have approximately the same shape. Also

note that the imaginary part of Ey, Ey produces an negative

real current (Figure 10). Thus G(E y) is positive. Since the
!y
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real part of E (Er) has approximately the same shape it follows
Yy

that O(E r) is again positive, so that the imaginary part of
y

Jy (Figure 11) should be positive.



REFERENCES

Abramowitz, N. and I. Stegun. Handbook of Mathematical
Functions, New York: Dover, 1970.

Arfken, G. Mathematical Methods for Physicists, Second Ed.,
New York: Academic Press, 1971.

Gradshteyn, I. S. and I. M. Ryzhik. Tables of Integrals Series
and Products, Fourth Ed., New York: Academic Press, 1965.

Harrimgton, R. F. Time-Harmonic Electromagnetic Fields,
New York; McGraw-Hill, 1961.

Field Computation by Moment Methods, New York;MacMillan, 1968.

Johnson, W. A., A. Q. Howard, and D. G. Dudley, "On the
Irrational Component of The Electric Green's Dyadic",
Radio Science, Vol. 14, No. 6, pp. 961-967, Nov-Dec., 1979.

Levin, L. Theory of Waveguides, London: Newmes-Butterworths,
1975.

Advanced Theory of Waveguides, London" Iliffe and Sons,
1951.

Meixner, J. "The Behavior of Electromagnetic Fields at Edges,"
IEEE Trans. Antennas Propagat., Vol. AP-21, pp. 442-446,
July 1972.

Morse, R. M. and H. Feshbach. Methods of Theoretical Physics,
Parts I and II, New York: McGraw-Hill, 1953.

Papoulis, A. The Fourier Integral and Its Applications,
New York; McGraw-Hill, 1962.

Seidel, D. B. "Aperture Excitation of a Wire in a Cavity, Part I,"
Air Force Office of Scientific Research, Report 1876-2,
June 1977.

"Aperture Excitation of a Wire in a Cavity,"
IEEE Trans. MTT. Vol. 26, pp. 906.I4,- ov. 1978.

Spiegel, M. R. Complex Variables, New York; McGraw-Hill, 1964.

64

J1



65

Titchmarsh, E. C. The Theory of Functions, Second Ed., London:
Oxford, University Press, 1939.

Wilton, D. and A. W. Glisson "Toward Simple Efficient Numerical
Techniques for Scattering by Surfaces," A.P.S. Int. Symp.
Digest, pp. 515-518, Amherst, Mass., Oct. 1976.

i77

, l+ .


